Дефлектор вентиляционный на трубу

Перефразируя крылатую мысль из известного фильма, можно сказать, что вентиляция – дело тонкое, слишком уж много факторов влияют на устойчивую работу вытяжной трубы. Редко кому удается построить в доме вентиляцию с небольшой трубой, чтобы занимала минимум места на крыше и одновременно обладала высокой производительностью. С течением времени, по мере запыления и зарастания вентиляционных каналов, производительность и эффективность системы вентиляции ощутимо снижается, поэтому приходится устанавливать дефлектор на вентиляционную трубу. Лучшие модели способны увеличить производительность до 20% от исходного значения тяги.

Что представляет собой дефлектор

Сегодня цилиндрический, конусообразный или округлый корпус дефлектора можно увидеть на крышах частных домов. По сути, дефлектор представляет собой аэродинамическую насадку, предназначенную для создания дополнительного разряжения на срезе вентиляционной трубы. В результате увеличивается перепад давления над трубой и внутри помещения, увеличивается тяга и производительность вентиляционной системы.

Конструктивно любой дефлектор состоит из трех узлов:

  • Корпуса с креплением, обеспечивающим надежную и прочную установку на срезе вентиляционной трубы;
  • Системы захвата воздушного потока, состоящей из нескольких неподвижных аэродинамических профилей или вращающегося элемента, как в случае турбинных дефлекторов;
  • Колпака или защитной крышки, закрывающей срез трубы от проникновения дождя, снега, любопытных птиц, насекомых, мышей и прочей живности.
К сведению! Замечательным свойством дефлектора является его абсолютная автономность. Устройство, обеспечивающее дополнительный прирост тяги почти на 10-20%, работает без внешних источников электрической или тепловой энергии.

Для работы вентиляционному дефлектору необходимо одно условие – постоянный, стабильный горизонтальный поток ветра, желательно одного направления. В условиях постоянного потока воздуха дефлекторная насадка позволяет уменьшить высоту вентиляционной трубы на крыше почти вдвое. В безветрие дефлектор практически не работает.

Усиление тяги благодаря сжатию дополнительного потока воздуха также используется в дымоходах и продувках, когда из помещения или камеры сгорания необходимо быстро удалить продукты сгорания, дым, гарь, копоть. Дефлектор помогает резко интенсифицировать горение. Например, в эпоху паровозов использовался импровизированный бустер: чтобы резко увеличить мощность паровой машины, пара из котла выбрасывалась через дымовую трубу наружу, что увеличивало интенсивность горения и мощность двигателя чуть ли не на 70%.

Конструкция и принцип работы дефлектора вентиляционной трубы

Устройство и принцип работы дефлекторного усилителя основаны на хорошо известном физическом явлении падения статического давления в потоке воздуха или воды. Упрощенное устройство и схема работы дефлектора приведены на чертеже и рисунке.

Основу конструкции составляет упрощенный аэродинамический профиль, как правило, это два вертикально расположенных конуса или гребня, направленных вершинами друг к другу. Поток воздуха, обтекая конусообразный или шаровидный профиль, сжимается и ускоряется под действием динамического напора, как минимум в два раза.

В результате давление воздуха на срезе вентиляционной трубы падает, что и обеспечивает увеличение производительности вентиляции. Конструкцию нельзя назвать абсолютно бесшумной. При проектировании размеров и характеристик дефлектора разработчики используют средние значения горизонтальных потоков воздуха. На практике скорость ветра может превышать 15 – 20 м/с, что приводит к возникновению воздушных колебаний в виде гула и высокочастотного свиста. Чтобы избежать зашумления дефлектора, наиболее современные модели изготавливаются в виде многочисленных секторов и спрямляющих решеток.

Дефлектор не стоит путать с вытяжным электровентилятором, устанавливаемым на срезе вентиляционной трубы, несмотря на то, что предназначение у обоих приборов одинаковое, конструкция, надежность, эффективность и принцип работы у них разные. При желании можно сделать простейший дефлектор вентиляционный своими руками по чертежам, приведенным ниже.

Наиболее распространенные модели вентиляционных дефлекторов

Дефлекторные усилители тяги широко используются в частном домостроении и в многоэтажных домах, как средство для повышения эффективности системы вентиляции. Сегодня наиболее известны несколько конструкций вентиляционных дефлекторов:

  1. Модель дефлектора, разработанная ЦАГИ – центральным аэродинамическим институтом, она так и называется. Тяжелая, громоздкая, рассчитанная на большую высоту и огромные расходы воздуха;
  2. Система Григоровича, изображенная на фото ниже. Одна из самых удачных схем дефлектора. Простая и эффективная конструкция, которую вполне по силам изготовить и установить на крыше своими руками;
  3. Турбо дефлекторы вентиляционные, отличаются наличием спрямляющей куполообразной решетки, способной вращаться под действием воздушного потока и одновременно создавать разрежение внутри купола;
  4. Парусные или флюгерные дефлекторы.
К сведению! Несмотря на внешние различия в конструкции, все дефлекторные системы работают по одному и тому же принципу инжекции потока.

Схема Григоровича отличается разительной простотой и высокой эффективностью. По сути, вентиляционный дефлектор построен в виде двух усеченных конусов, закрытых колпаком. Небольшой вес и прочность дефлектора позволяют устанавливать на относительно слабые вентиляционные и пластиковые вентиляционные трубы. Устройство нечувствительно к направлению воздушного потока, пульсациям и перетеканием ветра.

Дефлекторы по схеме Григоровича на сегодня занимают 80% рынка вентиляционных усилителей тяги для систем вентиляции частных домов.

По схеме Григоровича изготавливается промышленный образец вентиляционного дефлектора под маркой ДС, в котором уже имеется дополнительная защитная сетка от птиц и паразитов.

Модели ДС показывают максимальную эффективность усиления тяги в вентиляционной трубе только на плоской крыше. Кроме того, наличие сетки нередко приводит к обмерзанию экрана, но обойтись без защиты невозможно, так как вентиляционные трубы нередко используются птицами и насекомыми для проникновения внутрь здания.

Система дефлекторов разработки ЦАГИ

Модели ЦАГИ является основными для большинства промышленных объектов. Конструктивно представляет собой двухуровневый колпак-дефлектор с нижним и верхним обтеканием корпуса потоком воздуха. Чтобы избавиться от резонирующего шума и свиста при сильном ветре, корпус вентиляционного дефлектора закрывают кольцевым экраном.

По заявлениям разработчиков, экран позволяет защитить корпус от образования наледи и снежной пробки.

ЦАГИ очень хотели сделать свой дефлектор на вентиляционную трубу высокоэффективным и надежным, но на практике получилось очень дорогое и громоздкое изделие, страдающее обледенением в зиму и быстро ржавеющее даже при небольшом количестве химически активных окислов серы, азота и фосфора.

ЦАГИ дефлектор не прижился нигде, кроме цехов промышленных производств. В частном секторе модель не прижилась, ее даже не пытались копировать, кроме того, для эффективной работы вентиляционную трубу с дефлектором необходимо поднимать на 1,2-1,5 м над коньком крыши.

Турбина как способ усиления тяги в вентиляционной трубе

В качестве примера одного из наиболее интересных способов усиления тяги можно привести турбинные схемы. Наиболее распространенная купольная турбина изображена на фото.

Конструкция состоит из более двух десятков лопаток из тонколистового металла, собранных в бутон. Наружная оболочка из лопаток крепится на консольно закрепленную ось вращения.

Дефлектор устанавливается только на вентиляционные трубы круглого сечения. Куполообразное размещение лопаток позволяет эффективно улавливать горизонтальные воздушные потоки 0,1-0,5 м/с горизонтального и вертикального направления, что делает турбину необычайно эффективной. Для работы купола достаточно слабого «термика» от нагретой на солнце крыши.

Еще одним преимуществом турбины является ее неприхотливость к выбору места установки. Как правило, купола устанавливают на вентиляционную трубу, на высоте 30-35 см над кровельным покрытием, что практически не оказывает никакого влияния на стропила и обрешетку.

Дефлекторы турбинной схемы нечувствительны к пылевым бурям и интенсивному выпадению конденсата. Во-первых, даже при небольшой скорости вращения выпавшая пленка влаги срывается и скапывает с острых краев лопаток. Даже если наружная оболочка будет по каким-то причинам заблокирована, вентиляционная система все равно будет работать, но с меньшей на 10-15% эффективностью.

Парусные и капюшонные модели

Очень необычными по внешнему виду являются флюгерные или капюшонные модели дефлекторов.

По сути, это единственная схема, в которой полноценно используется эффект Бернулли или эжекции. Принцип работы устройства основывается на способности флюгера разворачиваться в подветренную сторону. Набегающий поток воздуха создает в вентиляционной трубе разрежение на 15-20% выше, чем в системах Григоровича или в турбине.

Конструкцию оснащают своего рода капюшоном, выполняющим роль крыла флюгера и одновременно закрывающим выхлопное отверстие вентиляционной трубы от дождя и снега.

Для эффективной работы вентиляционную трубу с капюшонным дефлектором необходимо поднимать на самую верхушку конька, где нет отраженных потоков воздуха. Основным недостатком флюгерного варианта является высокая инерция, при резких порывах ветра зачастую флюгер не успевает развернуться по ветру, и часть отходящих газов загоняется динамическим давлением обратно в вентиляционную систему дома.

Как и у турбины, флюгерный эффект усиления тяги и работоспособность капюшонного дефлектора практически не зависит от конденсата, пыли и температуры воздуха.

Одной из разновидностей флюгерной схемы являются трубчатые дефлекторы. По сути, это двухсторонний воздушный диффузор – конфузор, который также проворачивается потоком воздуха по ветру. Коэффициент усиления тяги в вентиляционной трубе в таком устройстве выше, чем у схемы Гриневича, но ниже, чем у классической капюшонной конструкции.

Заключение

Кроме перечисленных систем усиления разряжения в вентиляционной трубе, существует достаточно много комбинаций и модификаций с двойными насадками, с перфорированными стенками, с пылеуловителями, напорными трубами и клапанами обратной тяги. Но все они, так или иначе, обладают меньшей эффективностью и более сложным устройством, что неминуемо сказывается на устойчивости работы конструкции.

Отправить комментарий

Adblock
detector